Schlötter stellte den Datenanalyseexperten des SDSC-BW die Verkaufsdaten der letzten 13 Jahre zur Verfügung: insgesamt rund eine Million Datenelemente. Die Daten enthielten Verkaufsinformationen zu jedem Produkt an jedem Tag, wie z.B. Verkaufsvolumen, Lageradresse, Kundennummer, Bestellzeit, Lieferzeit usw.
Um die durch ungenaue Prognosen verursachten Verluste zu verringern, versuchte das SDSC-BW-Team, mithilfe des maschinellen Lernens die Vorhersage der Verkaufsmenge zu optimieren. Es betrachtete die Fragestellung hierfür als Zeitreihen-Vorhersage-Aufgabe. Da eine Unterprognose im Vergleich zu einer Überprognose zu einem dreifach höheren Verlust führen kann, definierten die Experten eine asymmetrische Bewertungsmetrik.
Data Innovation Community
Industrie 4.0
Projektpartner
Schlötter, Smart Data Solution Center Baden-Württemberg
Ansprechpartner
Murat Malyemez, malyemez@sicos-bw.de
Zeitraum
April 2019 – Oktober 2019